Optimized Architectural Glazing for Blender & Cycles

Software:
Blender 2.8 | Cycles Renderer

CG-Lion Architectural Glazing Presets Pack 1.0 is an custom architectural glazing shader I developed for Cycles render engine, that provides easy setup of real world architectural glazing surfaces, and ships with 40 ready to use material presets.

The shader has architecture-friendly real world parameters like ‘frosted‘, ‘milky‘, ‘smoked‘ glass etc., has convenient built-in inputs for effects like selective sand blasting or selective graphic coating and is internally optimized for transparent shadow casting.

CG-Lion Architectural Glazing Presets Pack 1.0 is available for purchase on Blender Market.

 

Related:
Realistic Spotlights for Blender & Cycles
Customizable Photo-realistic Car-paint shader for Cycles
Procedural Wood Shader for Cycles

Advanced Procedural Wood for Blender & Cycles

Software:
Blender 2.8 | Cycles

CG-Lion Wood Presets Pack 1.0 is an advanced 3D procedural wood shader I developed for Blender and the Cycles render engine that produces consistent wood pattern on all sides of the model without requiring UV coordinates.
The shader has many tweak-able parameters for easy customization of the wood pattern, and also has built-in varnish coat and paint layers.
CG-Lion Wood Presets Pack 1.0 ships with a ready-to-use material preset library.

CG-Lion Wood Presets Pack 1.0 is available on Blender Market:
https://blendermarket.com/products/cg-lion-wood-presets-pack-1

CGL_Wood_Presets_Pack_1.0_Node_B.jpg

This slideshow requires JavaScript.

CGL_Wood_Presets_Pack_1.0_Previews_Natural

CGL_Wood_Presets_Pack_1.0_Previews_Matte_Varnished

CGL_Wood_Presets_Pack_1.0_Previews_Varnished

Related:
Realistic Spotlights for Blender & Cycles
Optimized Architectural Glazing Shader for Cycles
Customizable Photo-realistic Car-paint shader for Cycles

 

Cycles render – Using the Normal Blue channel for top side effects

Software:
Blender 2.8 | Cycles Render

1.jpg

The shading normal‘s Z component can be easily used as a ready-to-use procedural mask for ‘covering effects’ like dust, snow, and if baked, also as a base for particle effects like debris and vegetation.

This simple shading flow example the shading normal‘s Z component, that represents how much the surface is facing upwards is separated , mixed (multiplied) with a noise textured and than fed into a ColorRamp Converter node for fine tuning the resulting mask:

2

This is the full shading flow of the snow effect in the image above:

3.jpg

Customizable Photo-realistic Car-paint shader for Cycles

Software:
Blender 2.8 | Cycles Render

CGL Car Paint Presets Pack 1.0 is a highly customizable photo-realistic car-paint shader I developed for Blender & the Cycles render engine.
The shader has built-in realistic effects like color blending, metallic flakes, clear-coat etc.
And ships with 32 ready-to-use real world car paint material presets.

CGL Car Paint Presets Pack 1.0 is available on Blender Market:
https://www.blendermarket.com/products/cg-lion-car-paint-presets-pack-1

CGL_CarPaint.jpg

CGL_Cycles_Car_Paint_Presets_Pack_1.0_No_Numbers

This slideshow requires JavaScript.

Related posts:
Realistic Spotlights for Blender & Cycles
Complex Fresnel texture for Cycles
Optimized Architectural Glazing Shader for Cycles
Procedural Wood Shader for Cycles

Complex Fresnel texture for Cycles

Software:
Blender 2.79 | Cycles Renderer

The most realistic way to create real world metal shaders is to use Complex Fresnel reflection.
Cycles has a general implementation of a Complex Fresnel reflection in its Principled shader (when Metallic is set to 1.0), but this implementation doesn’t allow using real world physical numeric Complex IOR values in order to accurately render physical metals.

You can use a Complex IOR OSL shader such as this one from Chaos Group,
But there are some limitations with it:
1) It isn’t supported in GPU rendering.
2) For some reason I don’t know I couldn’t get it to work with Cycles..

Seeing these limitations I decided to develop a Complex Fresnel/IOR texture for Cycles that will work on GPU, and your welcome to download it here on my studio’s website:
https://cg-lion.com/2018/07/08/free-complex-fresnel-texture-for-blender/

The blend file itself contains a text with some Complex IOR preset values for metals,
And you can get more physical IOR data from refractiveindex.info

Enjoy! 🙂

BlenderNation

Related:

  1. Fresnel Reflections
  2. Metallic shading in V-Ray Next
  3. Create rich metal in UE4 
  4. Customizable Photo-realistic Car-paint shader for Cycles

 

Realistic Spotlights for Blender & Cycles

Software:
Blender 2.79 | Cycles Renderer

There’s currently no built-in support for IES light sources in Blender & Cycles.
We already know that Blender 2.8 will have the feature built into it (which is great news!), and there’s an addon that provides the functionality, but I wasn’t satisfied with it’s workflow, not being integrated well into Cycles.
So I decided to develop a custom Cycles shader (node group) that will provide realistic IES like spotlights in a convenient customizable way.

The Shader I developed is called CG-Lion Spotlight Presets Pack 1.0 and is available for purchase on Blender Market.
It doesn’t load external IES files, but instead has a pre-configured library of 20 spotlights shapes, and also provides features that are not available in IES lighting like tweaking the spotlight beam focus, adding a chromatic dolor dispersion effect, and producing a correctly bright surface at the light source.

CGL_Spotlight_Presets_Pack_1.0_Previews.jpg

This slideshow requires JavaScript.


Related:

Customizable Photo-realistic Car-paint shader for Cycles
Complex Fresnel texture for Cycles
Optimized Architectural Glazing Shader for Cycles
Procedural Wood Shader for Cycles

Cycles – Nested Refractive Volumes

Software:
Blender 2.79 | Cycles Renderer

When it comes to rendering nested refractive volumes, like a glass containing a beverage, the way to set it up in Cycles is common to many modern ray-tracers.
The touching bodies of refractive material like glass and liquid must overlap each other slightly so that rays being traced “meet” the right surface without having surfaces touching and causing “Z fighting” artifacts.

Transparencies_Air_Bubbles-01

When the render includes volumetric shading, like Volume Absorption (sometimes referred to as “fog”), the meshes must be set-up in a certain way for Cycles to interpret the volumes properly.

Intersecting volumes like a beverage glass and liquid must be separate objects to be rendered correctly. When joined into one mesh the renderer doesn’t treat the different volumes separately even though they have different shaders.
And the result is that the volume (depth) of the inner volume is calculated as just the depth on the intersection (the overlap) of the volumes.
In this example the wine can’t be rendered correctly when the glass and liquid meshes are joined.
The wine liquid doesn’t get it’s deep color because the renderer “thinks” it’s very thin.

Untitled-1.jpg

When the meshes are separated the renderer interprets the wines volume correctly and the Volume Absorption shader produces the right color:

Untitled-2

Setting up cavities within a volume like air bubbles, is similar to many other modern ray-tracers. You just have to create inner meshes that have flipped normals facing inwards, so air bubbles within the wine don’t need to have “air” material, they have the same wine shader, but have their faces flipped.

Note that in this case, it’s the other way around from the previous example.
If the bubble meshes are separate from the liquid mesh the renderer doesn’t interpret them as holes in the liquid volume, and produces an incorrect result:

Untitled-3

When the bubble meshes are joined to the liquid mesh, the volume is interpreted correctly:

Untitled-4.jpg

In short:
For these refractive volumetric effects to be rendered correctly in Cycles,
Surfaces of the same material volume must be joined to one mesh, and separated from meshes belonging to different material volumes.
* This may sound trivial, but it’s not. there are rendering systems in which only the surface shader determines volume interpretation and that has advantages like the convenience to aninate bubbles as separate objects from the liquid itself or the ability to join a glass bottle with the liquid into one mesh model.